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Sequence shuffle controls morphological
consequences in a self-assembling tetrapeptide‡
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Abstract: Peptide and protein self-assembly is a well-studied phenomenon in chemistry and biology, where nanoscopic building
blocks exhibit rapid self-association to reveal supramolecular aggregates of defined structural features. These superstructures
are stabilized by hydrophobic interactions, hydrogen bonding and a host of other noncovalent interactions. Thus, amino acid side
chains in the primary structure hold importance in dictating secondary structures and preference for particular conformational
signatures in peptide aggregates. This report describes contrasting nanoscale morphologies in antamanide-derived synthetic
tetrapeptide mutants, which are composed by shuffling only two amino acids: phenylalanine and proline. Remarkable differences
in ultrastructures in primary sequence-shuffled tetrapeptides suggest dissimilar aggregational pathways due to context-dependent
location of proline and phenylalanine residues with respect to one another. Copyright  2007 European Peptide Society and John
Wiley & Sons, Ltd.

Supplementary electronic material for this paper is available in Wiley InterScience at http://www.interscience.wiley.com/jpages/
1075-2617/suppmat/
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INTRODUCTION

Peptide-based self-assembled structures respond to a
variety of factors such as pH, ionic strength, con-
centration, and hydrophobicity and hydrophilicity of
amino acid side-chains [1–5]. Such external stimuli
alter nucleation mechanisms in self-assembled struc-
tures and affect the propagation step, thereby triggering
observable variations in the morphological features.
With an aim to generate structures of required mor-
phologies, the study and control of parameters govern-
ing structural transformations has become an area of
contemporary interest [6–8].

Aromatic π –π interactions are crucial for three-
dimensional structures and functions of proteins
[9–11]. For example, these interactions were implicated
for stability and directionality to amyloid self-assembly
and influence fibril morphology [12–14]. In this vein,
properties of a peptide fragment KLVFFA, as a crucial
recognition motif in Aβ aggregation, is well documented
[15,16]. It has been proposed that FF aromatic dipeptide
may serve as a minimal motif mimicking the aggregation
properties of the Aβ protein [17–21].

Antamanide, a naturally occurring cyclic decapep-
tide, inhibits the uptake of bile salts by hepatocytes
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and this activity is attributed to the Pro-Phe-Phe tripep-
tide sequence (Figure 1) [22–24]. Karle and coworkers
have extensively reported on the channel-like solid state
structure of antamanide in the presence or absence of
metal ions [25–27]. We decided to study the aggre-
gation of truncated antamanide sequences containing
phenylalanine residue(s) to determine if the shuffling
of aromatic residues, with respect to proline, will have
an impact on ensuing ultrastructural morphologies.
Our interest in this work emanates from our recent
studies dealing with the self-assembly of short pep-
tide sequences, including the ones containing aromatic
amino acids [28–36].

MATERIAL AND METHODS

General

Dichloromethane; N, N-dimethylformamide; methanol; tri-
ethylamine; and 1, 2-dimethoxy ethane were distilled
following standard procedures. Trifluoroacetic acid; N,
N′-dicyclohexylcarbodiimide; N-hydroxybenzotriazole; di-tert-
butyl-pyrocarbonate; sodium hydroxide; diethyl ether; and
L-amino acids were purchased from Spectrochem, Mumbai,
India, and used without further purification. 1H and 13C NMR
spectra were recorded on JEOL-JNM LAMBDA 400 model oper-
ating at 400 and 100 MHz, respectively. Mass spectra were
recorded at RSIC, Lucknow, India on JEOL SX 102/DA-6000
mass spectrometer data system using Argon/Xenon (6 kV,
10 mA) as the FAB gas. Elemental analyses (C, H, N) were per-
formed on Perkin-Elmer 240-C automatic elemental analyzer.
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Figure 1 Antamanide, a naturally occurring cyclic decapeptide (curved lines indicate truncation sites). This figure is available
in colour online at www.interscience.wiley.com/journal/jpepsci.

Peptide Synthesis

All tetrapeptides were synthesized by simple solution phase
fragment condensation methodologies using t-Boc chemistry
and in the presence of HOBt. Purity of final deprotected prod-
ucts was checked by analytical FPLC [Amersham Pharmacia
FPLC system (Akta Basic), using a µRPC C2/C18 ST 4.6/100
column (Pharmacia Biotech) with an applied gradient of 0.1%
trifluoroacetic acid in water (eluent A) to 0.1% trifluoroacetic
acid in acetonitrile (eluent B) (20–80% in 20 min). Concentra-
tion of a peptide for a typical analytical run was ∼1 mg/ml] and
satisfactory analytical spectroscopic results were also obtained
for all the samples. Details of peptide syntheses are described
in the supporting information.

Atomic Force Microscopy (AFM)

Fresh peptide samples were imaged with an atomic force
microscope (Molecular Imaging, USA) operating under Acous-
tic AC (AAC) mode, with the aid of cantilever (NSC 12(c) from
MikroMasch). The force constant was 0.6 N/m, while the res-
onant frequency was 150 kHz. The images were taken in air at
room temperature, with a scan speed of 1.5–2.2 lines/s. The
data acquisition was done using PicoScan 5 software, while
the data analysis was done using visual SPM. Fresh solutions
of ‘tetrapeptides’ (3 mM) in 50% methanol/water were prepared
and micrographs were recorded. The tetrapeptides (3 mM)
were incubated at 37 °C for 0–30 days in methanol/water
and micrographs were recorded for selected incubation peri-
ods. Aqueous solution of 10 µl aliquot of these tetrapeptides
was transferred onto freshly cleaved mica surface and uni-
formly spread using a spin-coater operating at 200–500 rpm
(PRS-4000). The sample-coated mica was dried for 30 min at
room temperature, followed by atomic force microscopy (AFM)
imaging.

Scanning Electron Microscopy (SEM)

A 20 µl aliquot of the fresh peptide solution was dried at room
temperature on a copper stub and coated with gold. Scanning
electron microscopy (SEM) images were made using a FEI
QUANTA 200 microscope equipped with a tungsten filament
gun operating at WD 10.6 mm and 20 kV. Concentration of
the peptide sample was 3 m M.

Transmission Electron Microscopy (TEM)

A 10 µl aliquot of the peptide solution after 10 and 30 days
of incubation was placed on a 400 mesh copper grid. After
1 min, excess fluid was removed and the grid was stained with
2% uranyl acetate in water. The excess staining solution was
removed from the grid after 2 min. Samples were viewed using
a JEOL 1200EX electron microscope operating at 80 kV.

Fourier Transform Infrared Spectroscopy

Infrared spectra of peptide samples were recorded using a
Bruker Vertex 70 Fourier transform infrared spectroscopy
(FTIR) spectrometer with a resolution 4 cm−1, scan speed
2.5 kHz, and 128 scans co-addition, in the KBr pellet
form. The obtained spectra were smoothened by using the
Savintky-Goolay algorithm to eliminate the noise and by
operating second derivative transformations on the spectra.
Peptide solutions were incubated at 37 °C for 30 days and
then lyophilized. The deconvolution of the FTIR spectra was
achieved using OPUS (Bruker) spectroscopic software.

RESULTS AND DISCUSSION

The morphological consequences in self-assembled
structures of six truncated tetrapeptides, starting from
the Phe5 residue of antamanide, were studied. The
peptide sequences synthesized were: Phe5-Phe-Pro-
Pro (FFPP), Phe6-Pro-Pro-Phe (FPPF), and Pro7-Pro-
Phe-Phe (PPFF), and three scrambled tetrapeptide
sequences: Pro-Phe-Phe-Pro (PFFP), Pro-Phe-Pro-Phe
(PFPF), and Phe-Pro-Phe-Pro (FPFP) for control exper-
iments (Figure 2). Interestingly, PPFF, FFPP, and
PFFP, containing an FF dipeptide motif, displayed
remarkably different ultrastructural morphologies upon
aging in solution, while the other three peptides (FPPF,
PFPF, FPFP) failed to display resolvable structures.

AFM with 10-day aged solutions of PPFF, FFPP, and
PFFP in 50% aqueous methanol, revealed the emer-
gence of three distinct morphologies (Figures 3(a–c)).
FFPP afforded formation of circularly wound struc-
tures; aging of PPFF resulted in the formation of long
fibers, while vesicular morphologies were observed for
the PFFP tetrapeptide. The thickness of circular fibers
from 10-day aged FFPP sample was determined to
be 1 µm, while the fiber height (Z-scale) was 280 Å
(Figure 3(a)). The thickness of straight tubular fibers
from PPFF was 64 nm, with a height (Z-scale) of 34 Å
and for PFFP vesicular structures, the thickness was
∼1.2 µm, with height (Z-scale) of 560 Å (Figure 3(b–c)).

On prolonged incubation of 30 days, FFPP showed
twisted fibrillar ring-like structures; aging of PPFF
resulted in thicker fibers; while PFFP displayed a more
dense vesicular morphology, signifying a direct effect of
time dependence (Figure 3(d–f)). It is worth noting that
a longer duration of incubation had no effect on the
gross morphology of self-assembled tetrapeptides. The
magnified 2D and 3D AFM micrographs of the three
peptides at either 10 or 30 days of incubation present
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Figure 2 Molecular structures of (a) FFPP, (b) PPFF, (c) PFFP, (d) PFPF, (e) FPPF, and (f) FPFP.

Figure 3 AFM micrograph of aged peptide samples in 50% aqueous methanol: (a, d) FFPP; (b, e) PPFF; and (c, f) PFFP (10-
and 30-day aged samples for respective peptides at 37 °C).
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more resolvable features of the overall morphology
(Figure 4). SEM and transmission electron microscopy
(TEM) of aged samples further confirmed overall
morphology of the ultrastructures observed in the AFM
studies (Figure 5(a–f)).

Curiously, FPPF, FPFP, and PFPF did not form any
resolvable structures. We observed that Pro-Pro dipep-
tide or Pro residues at either terminus was tolerable
enough to support stable self-assembled structures,
while Pro-Pro dipeptide flanked by phenylalanine on

Figure 4 Magnified 2D and 3D AFM micrograph of aged tetrapeptides: (a, d) FFPP (30 days); (b, e) PPFF (10 days); and (c, f)
PFFP (10 days).

Figure 5 SEM micrographs (a–c) of 30-day aged tetrapeptides: (a) FFPP; (b) PPFF; (c) PFFP. TEM micrographs (d–f) of 10-day
aged samples: (d) FFPP; (e) PPFF; (f) PFFP, respectively.
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Figure 6 AFM micrographs of self-assembled aggregates of (a) FPFP, (b) FPPF, and (c) PFPF (10-day incubation at 37 °C).

Figure 7 TEM and SEM micrographs of unresolved morphologies: (a, d) FPFP, (b, e) FPPF, and (c, f) PFPF (10-day incubation,
37 °C).

either side or when present in an alternating fash-
ion in the tetrapeptide sequence, was not tolerated
by the self-assembly process (Figures 6 and 7). Inci-
dentally, structure-breaking and local conformational
effects of proline residues have been described in liter-
ature [37–39]. However, Balaram and coworkers have
presented an elegant elucidation of the role of dipro-
line segments as folding nuclei in model peptides [40].
A number of conformations were detected in model
studies and it was concluded that flanking residues
and local environment effects may govern conformer
distributions for the diproline segment.

Thus, it is reasonable to assume that overall mor-
phology of the six tetrapeptides analyzed in this study
is dictated by the aromatic interactions engendered in
the diphenylalanine motif [6b], assisted by a subtle
conformational control exerted by the diproline motif.
The latter effect is especially significant for PPFF and
FFPP peptides which revealed formation of stable self-
assembled structures. A more detailed investigation of

the possible interactions by NMR studies is required for
a deeper structural understanding and to establish the
precise role of the two amino acids in self-organization.

The self-assembly of N-Boc and ester protected
tetrapeptides was also studied as control experi-
ments. However, the protected derivatives failed to
reveal resolvable nanostructures thus suggesting a
crucial role of free N- and C-terminus peptides for
the emergence of stable ultrastructural morphologies
(Figure S2). Thus, it appears that the zwitterionic
nature of peptides may be an important electrostatic
consideration to arrive at defined morphologies in the
cases described here. It is worth mentioning that
the role of electrostatic interactions in diphenylala-
nine dipeptide self-assembly has been investigated by
Gazit and Reches, where they concluded that aromatic
interactions are prone to modulation by chemical mod-
ifications which change the net charged state of the
dipeptide [41].
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Figure 8 FTIR analyses of secondary structure of the studied
tetrapeptides were analyzed from the second derivative of the
infrared absorption spectra curve-fitting in the amide I and II
region of (a) FFPP, (b) PPFF, and (c) PFFP tetrapeptides.

We resorted to FTIR spectroscopy to access informa-
tion concerning the occurrence of various secondary
structures in self-assembled peptide nanostructures
described here [42–46]. Deconvolution and band-fitting
of FTIR spectrum in the amide I and II regions of
the three tetrapeptides displaying resolvable struc-
tures, FFPP, PPFF, and PFFP are shown in Figure 8.
The amide I region of FFPP contains three compo-
nents at 1693, 1682, and 1636 cm−1, respectively. The
absorption bands at 1636 and 1693 cm−1 are usu-
ally assigned to antiparallel β-sheets, while the band
at 1682 cm−1 is indicative of random structures or β-
turns. The deconvoluted amide II region of FFPP shows
two components at 1567 and 1536 cm−1, respectively,
where the former band implicates a β-sheet conforma-
tion.

The amide I region for PPFF contains three
component peaks at 1693, 1671, and 1645 cm−1,
respectively, which are assigned to antiparallel β-sheet
conformation. Similarly, PFFP amide I bands at 1693
and 1670 cm−1 arise due to antiparallel β-sheets, and
the one at 1633 cm−1 could be attributed to β-sheets or
cross-β structures. From the overall deconvoluted FTIR
data of these tetrapeptides, we can comment that β-
sheets and related structures predominate resulting in
the formation of discernable and resolvable aggregated
nanostructures. Moreover, bands at 1712 (FFPP), 1716
and 1708 (PPFF), and 1715 cm−1 (PFFP), respectively,
are attributed to free carboxylic acid group that have
been previously implicated in peptide nanostructure
formation and stabilization [47–50].

Fluorinated solvents exert considerable effect on sta-
bilizing peptide and protein structures [51–53]. FFPP,
PPFF, and PFFP were incubated in 50% aqueous tri-
fluoroethanol and interestingly, the structures observed
in aqueous methanol were retained in this solvent sys-
tem suggesting that the persistent structures formed
by these three sequences remain unaffected by change
in the solvent composition (Figure 9).

Finally, we decided to construct a structural model to
understand the possible reasons behind the emergence
of three distinct morphological structures by amino
acid shuffling in simple tetrapeptides. Model building
for FFPP and PPFF fragments was directly achieved
from antamanide crystal coordinates [25–27], while
PFFP was separately modeled, following geometry
optimization using the MM+ force field. Similar to
the antamanide crystal structure, PPFF exhibited
interaction between the aromatic and pyrrolidine rings
(Figure 10), while PFFP and FFPP displayed a clear
preference for aromatic stacking interactions (data not
shown).

In the proposed model, PPFF molecules were stacked
in columnar fashion in order to gain stability via aro-
matic–aromatic and pyrrolidine–aromatic interactions.
Such an arrangement may be envisaged as a plat-
form responsible for the growth of fibrous structures
(Figure 10). Superimposition of a PPFF fiber observed
in the AFM upon this columnar hierarchical model
revealed that ∼18 tetrapeptide molecules could fit in
163 Å long and 135 Å wide fibers.

A recent study by Koksch and coworkers nicely
demonstrated a peptide construct achieving three
different secondary structures, viz. random coil, β-sheet
ribbons, and α-helical fibers, in response to pH and
concentration variations [54]. It was suggested that
such models may be used to study the influence of
external factors on the peptide primary structure. Our
results suggest that primary structure shuffle affects
morphological consequences in the self-assembled
structures. In the present case, structural variations
are dictated by the relative position of Phe-Phe dipeptide
vis-à-vis diproline motif through an intriguing interplay
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Figure 9 AFM micrographs of 10-day aged solutions of (a) FFPP, (b) PPFF, and (c) PFFP in 50% aqueous trifluoroethanol.

Figure 10 The proposed model for fiber formation by π –π and pyrrolidine–aromatic interactions. (a) Structure of the truncated
sequence PPFF is taken from the antamanide crystal structure, followed by geometry optimization using MM+ force field with the
help of Hyperchem. (b) Superimposed AFM micrograph of PPFF.

of aromatic and pyrrolidine–aromatic interactions. We
intend to elaborate these parameters for morphological
transformations in other examples and by performing
detailed solution phase studies. However, the present
observations merit attention and we believe that such
studies may lead to newer design paradigms for
the generation of desired morphologies that can be
predicted a priori.

CONCLUSIONS

This study illustrates a fascinating role of aro-
matic–aromatic and pyrrolidine–aromatic interactions
in dictating aggregative ordering in a series of pri-
mary sequence-shuffled tetrapeptides. Microscopic evi-
dences described here provide support for the aggrega-
tive propensity, while spectroscopic data reveals that
the tetrapeptides quickly reach toward conformation(s)
favoring antiparallel β-sheets or related structures,
which are aided by aromatic–aromatic and pyrroli-
dine–aromatic interactions, leading to the emergence of
a variety of peptide nanostructures. This study opens

up new possibilities in understanding the role of pri-
mary sequence shuffling in peptide aggregation and
as a design modality toward constructing interesting
nanoscale motifs for advanced applications.
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Supplementary electronic material for this paper is avail-

able in Wiley InterScience at: http://www.interscience.wiley.
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Random coils, beta-sheet ribbons, and alpha-helical fibers: one
peptide adopting three different secondary structures at will.
J. Am. Chem. Soc. 2006; 128: 2196–2197.

Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2008; 14: 118–126
DOI: 10.1002/psc


